Parallelization of a Three-Dimensional Flow Solver for Euler Rotorcraft Aerodynamics Predictions
نویسندگان
چکیده
An approach for parallelizing the three-dimensional Euler/Navier-Stokes rotorcraft computational fluid dynamics flow solver transonic unsteady rotor Navier-Stokes (TURNS) is introduced. Parallelization is performed using a domain decomposition technique that is developed for distributed-memory parallel architectures. Communication between the subdomains on each processor is performed via message passing in the form of message passing interface subroutine calls. The most difficult portion of the TURNS algorithm to implement efficiently in parallel is the implicit time step using the lower-upper symmetric Gauss-Seidel (LU-SGS) algorithm. Two modifications of LUSGS are proposed to improve the parallel performance. First, a previously introduced Jacobi-like method called data-parallel lower upper relaxation (DP-LUR) is used. Second, a new hybrid method is introduced that combines the Jacobi sweeping approach in DP-LUR for interprocessor communications and the symmetric Gauss-Seidel algorithm in LU-SGS for on-processor computations. The parallelized TURNS code with the modified implicit operator is implemented on two distributed-memory multiprocessor, the IBM SP2 and Thinking Machines CM-5, and used to compute the three-dimensional quasisteady and unsteady flowfield of a helicopter rotor in forward flight. Good parallel speedups with a low percentage of communication are exhibited by the code. The proposed hybrid algorithm requires less CPU time than DP-LUR while maintaining comparable parallel speedups and communication costs. Execution rates found on the IBM SP2 are impressive; on 114 processors of the SP2, the solution time of both quasisteady and unsteady calculations is reduced by a factor of about 12 over a single processor of the Cray C-90.
منابع مشابه
Aerodynamic Design Optimization Using Genetic Algorithm (RESEARCH NOTE)
An efficient formulation for the robust shape optimization of aerodynamic objects is introduced in this paper. The formulation has three essential features. First, an Euler solver based on a second-order Godunov scheme is used for the flow calculations. Second, a genetic algorithm with binary number encoding is implemented for the optimization procedure. The third ingredient of the procedure is...
متن کاملSimulation of Store Separation using Low-cost CFD with Dynamic Meshing
The simulation of the store separation using the automatic coupling of dynamic equations with flow aerodynamics is addressed. The precision and cost (calculation time) were considered as comparators. The method used in the present research decreased the calculation cost while limiting the solution error within a specific and tolerable interval. The methods applied to model the aerodynamic force...
متن کاملShort Communication A Parallel Newton–Krylov Method for Navier–Stokes Rotorcraft Codes
The application of Krylov subspace iterative methods to unsteady three-dimensional Navier–Stokes codes on massively parallel and distributed computing environments is investigated. Previously, the Euler mode of the Navier–Stokes flow solver Transonic Unsteady Rotor Navier–Stokes (TURNS) has been coupled with a Newton–Krylov scheme which uses two Conjugate-Gradient-like (CG) iterative methods. F...
متن کاملMixed Large-Eddy Simulation Model for Turbulent Flows across Tube Bundles Using Parallel Coupled Multiblock NS Solver
In this study, turbulent flow around a tube bundle in non-orthogonal grid is simulated using the Large Eddy Simulation (LES) technique and parallelization of fully coupled Navier – Stokes (NS) equations. To model the small eddies, the Smagorinsky and a mixed model was used. This model represents the effect of dissipation and the grid-scale and subgrid-scale interactions. The fully coupled NS eq...
متن کاملScientific Flow Field Simulation of Cruciform Missiles Through the Thin Layer Navier Stokes Equations
The thin-layer Navier-Stokes equations are solved for two complete missile configurations on an IBM 3090-200 vectro-facility supercomputer. The conservation form of the three-dimensional equations, written in generalized coordinates, are finite differenced and solved on a body-fitted curvilinear grid system developed in conjunction with the flowfield solver. The numerical procedure is based on ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2003